

Bayesian statistics approach to interferometry **RESOLVE** meets ALMA

Łukasz Tychoniec (European Southern Observatory) Fabrizia Guglielmetti, Philipp Arras, Torsten Enßlin, Eric Villard

Observational astrophysics 101

Longer wavelengths: peering into the cooler universe

Image credit: NASA, ESA, CSA, and STScI

Longer wavelengths: peering into the cooler universe

Image credit: NASA, ESA, CSA, and \$TScl

JTV

Łukasz Tychoniec, European Souther

For longer wavelengths we need bigger telescopes...

Old Green Bank Telescope (90 m)

Image credit: Richard Porcas/NRAO

Łukasz Tychoniec, European Southern Observatory

$$R = 1.22 \frac{\lambda}{D}$$

$R = 30'' = 80\ 000\ au\ @\ 8000\ light\ years$

For longer wavelengths we need bigger telescopes...

Old Green Bank Telescope (90 m)

Image credit: Richard Porcas/NRAO

Łukasz Tychoniec, European Southern Observatory

$R = 1.22 \frac{\lambda}{D}$

$R = 30'' = 80\ 000\ au\ @\ 8000\ light\ years$

...and building big telescopes is hard!

Old Green Bank Telescope (0 m)

Image credit: Richard Porcas/NRAO

...and building big telescopes is hard!

Old Green Bank Telescope (0 m)

Image credit: Richard Porcas/NRAO

We can use many small telescopes as one big array!

Łukasz Tychoniec, European Southern Observatory

Very Large Array (25 m)

Image credit: NRAO

Young experiment - principle of interferometry

Jackson 2008

Interferometry - using wave properties of light to overcome technical limitations

Atacama Large Millimeter/submillimeter Array (ALMA)

66 antennas (12 and 7 metres diameter)

Configurations from 160 m to 16 km max. baseline

Łukasz Tychoniec, European Southern Observatory

5000 m.a.s.l at Atacama Plateau - one of the driest places on Earth

MaxEnt22

Revolution of interferometry – ALMA

Revolution of interferometry – ALMA

ALMA delivered stunning images at various cosmic scales

Missing information problem in interferometry

CLEAN fundamentals

Jackson 2008

CLEAN fundamentals

Jackson 2008

CLEAN fundamentals

Jackson 2008

Limitations of CLEAN

RESOLVE algorithm

Enßlin+2009, Junklewitz+2014, Arras+2018

\$

Comparison of RESOLVE and CLEAN algorithms - VLA test

Comparison of RESOLVE and CLEAN algorithms - VLA test

RESOLVE excels in retrieving large-scale emission

Astronomical signal inference

Information Field Theory (IFT)

- Enables to use Bayesian inference in the context of field theory
- Treats field as a continuous object (no pixelisation)
- Allows for field theory formalism
- Well fitted to the context of inference of sky brightness from interferometric observation
- Practically: NIFTy python package (Reinecke+2018, Selig+2013, Arras+2019)

Enßlin+2009

Minimum information on the field

1.Emitting sources have some unknown spatial correlation structure

2.Signal field is strictly positive

3. There is orders of magnitude difference in brightness within the field

Minimum information on the field

1.Emitting sources have some unknown spatial correlation structure

2.Signal field is strictly positive

3. There is orders of magnitude difference in brightness within the field

$$d = RI + d$$

Junklewitz+2014

MaxEnt

Gaussian probability distribution

Logarithm of the signal field is Gaussian

$n = RI_0 e^s + n$

RESOLVE application to simulated dataset

A simulation of Gaussian continuum sources

1e-5

Łukasz Tychoniec, European Southern Observatory

Means

Standard deviation

Power spectrum

MaxEnt22

Łukasz Tychoniec, European Southern Observatory

Łukasz Tychoniec, European Southern Observatory

Łukasz Tychoniec, European Southern Observatory

1e-5

Łukasz Tychoniec, European Southern Observatory

Means

Standard deviation

Power spectrum

MaxEnt22

Iterative process

Łukasz Tychoniec, European Southern Observatory

Sr log(F)

0

2

4

6

1e-5

Power spectrum

Iterative process

Samples

Sample 2

Sample 5

Sample 3

Sample 4

Sample 6 Sample 8 Sample 7 1e-5 1e-5

Łukasz Tychoniec, European Southern Observatory

8 1e-5

1e-5

Standard deviation

Power spectrum

10⁵

10-21

10-22

10-23

104

10⁶

Final results of RESOLVE imaging

Łukasz Tychoniec, European Southern Observatory

Direct comparison of imaging for simulated datasets

Recovery of flux by CLEAN and RESOLVE

2	Source	CLEAN Flux [mJy]	RESOLVE Flux [mJy]	Model Flux [mJy]
rcsec ²	1	24.96	26.68	34.11
Uy/a.	2	23.59	23.59	23.31
ΓĽ	3	17.82	17.82	16.69

Comparable fluxes retrieved by CLEAN and RESOLVE

Recovery of flux by CLEAN and RESOLVE

2	Source	CLEAN Flux [mJy]	RESOLVE Flux [mJy]	Model Flux [mJy]
rcsec ²	1	24.96	26.68	34.11
Uy/a.	2	23.59	23.59	23.31
ΓĽ	3	17.82	17.82	16.69

Comparable fluxes retrieved by CLEAN and RESOLVE

HT Lup	GW Lup	IM Lup	RU Lup
Sz 114	Sz 129	MY Lup	HD 142666
HD 143006	AS 205	SR 4	Elias 20
DoAr 25	Elias 24	Elias 27	DoAr 33
WSB 52	WaOph 6	AS 209	HD 163296

HT Lup	GW Lup	IM Lup	RU Lup
Sz 114	Sz 129	MY Lup	HD 142666
HD 143006	AS 205	SR 4	Elias 20
DoAr 25	Elias 24	Elias 27	DoAr 33
WSB 52	WaOph 6	AS 209	HD 163296

Final image and uncertainty for Sz114 disk

Łukasz Tychoniec, European Southern Observatory

Direct comparison of results for Sz 114 protoplanetary disk

Flux comparison of results for Sz 114 protoplanetary disk

2

arcse

[Jy]

Comparable fluxes retrieved by CLEAN and RESOLVE

r	CLEAN Flux [mJy]	RESOLVE Flux [mJy]	CLEAN/RESO
0.06"	8.95	9.48	95 %
0.15"	22.53	23.21	97 %
0.35"	47.24	47.24	100 %

Flux comparison of results for Sz 114 protoplanetary disk

r	CLEAN Flux [mJy]	RESOLVE Flux [mJy]	CLEAN/RESO
0.06"	8.95	9.48	95 %
0.15"	22.53	23.21	97 %
0.35"	47.24	47.24	100 %

[Jy/arcsec²]

[I]

Comparable fluxes retrieved by CLEAN and RESOLVE

Łukasz Tychoniec, European Southern Observatory

Conclusions

We successfully applied RESOLVE algorithm to ALMA data

Conclusions

We successfully applied RESOLVE algorithm to ALMA data

simulated data and real ALMA observations

Łukasz Tychoniec, European Southern Observatory

RESOLVE recovers flux with comparable accuracy to CLEAN in

Conclusions

simulated data and real ALMA observations

RESOLVE along with uncertainty map

- We successfully applied RESOLVE algorithm to ALMA data
- RESOLVE recovers flux with comparable accuracy to CLEAN in
- We achieve super-resolution image of planet-forming disk with

Conclusions

simulated data and real ALMA observations

RESOLVE along with uncertainty map

- We successfully applied RESOLVE algorithm to ALMA data
- RESOLVE recovers flux with comparable accuracy to CLEAN in
- We achieve super-resolution image of planet-forming disk with
- RESOLVE presents a potential to push forward imaging procedures of interferometric observations and enhance/support capabilities of CLEAN

